Uncategorized

Multifunctional drug nanosystems: A summary of recent researches at IMS/VAST

The main task of nanomedicine is to fabricate, normally by chemical engineering, nanoscale systems that can play various functions of both diagnosis and treatment.

This report aims to present some researches, carried out by the Laboratory of Biomedical Nanomaterials (IMS/VAST in Hanoi), on fabrication and characterization of nanovectors for the disease of cancer.

Fig-2-Drug-carriers-drug-conjugates-and-drug-nanosystems-can-be-engineered-to-control

The first part deals with magnetite (Fe3O4) nanoparticles (MNPs) based nanoconjugates, functionalized by coating with several polymers as well as loaded with a drug of curcumin. The used MNPs were obtained by coprecipitation, exhibited spherical shape of diameter of 15-20 nm, saturation magnetization of Ms ~ 65-70 emu/g.

The coating polymers were acrylic acid (PAA), chitosan (CS) and Alginate (Alg) which were confirmed using the infrared (FTIR) spectra. Magnetic Inductive Heating (MIH) measurements demonstrated that the fabricated MNPs-based conjugates exhibited quite high heating performance, perspective for hyperthermia application. The application of Fe3O4@PAA for in-vivo hyperthermia treatment of cancer incubated on mice will be shown.

02

As for imaging application, the Fe3O4@CS@Cur was used to demonstrate a dual possibilities, fluorescence and magnetic resonance, of monitoring cell penetration by macrophage. In the second part, we show a recent study on targeted delivery systems of paclitaxel/doxorubicin/curcumin-loaded copolymer/polymer nanoparticles, which were prepared by a modified solvent extraction/evaporation technique and decorated by folic acid.

The obtained spherical nanoparticles were negatively charged with a zeta potential of about − 30 mV with the size around 50 nm and a narrow size distribution. The targeting effect of anticancer-drugs nanoparticles with folate decoration was investigated in vitro by the uptake in cancer cell lines and in nude mouse.

The results indicate that the targeted paclitaxel/doxorubicin/curcumin-loaded copolymer/polymer nanoparticles are successful anticancer-targeted drug delivery system for effective cancer chemotherapy.

Title: Multifunctional drug nanosystems: A summary of recent researches at IMS/VAST
Authors: Nguyen, X.P.
Mai, T.T.T
Ha, P.T.
Pham, H.N.
Luu, H.N.
Do, H.M.
Tran, D.L.
Nguyen, H.N.
Hoang, T.M.N.
Ho, A.S.
Nguyen, L.T.
Keywords: Magnetic resonance imaging
Magnetic nanoparticles
Hyperthermia
Drug delivery systems
Cell culture
Chemotherapy
Issue Date: 2015
Publisher: Springer Verlag
Citation: Scopus
Abstract: The main task of nanomedicine is to fabricate, normally by chemical engineering, nanoscale systems that can play various functions of both diagnosis and treatment. This report aims to present some researches, carried out by the Laboratory of Biomedical Nanomaterials (IMS/VAST in Hanoi), on fabrication and characterization of nanovectors for the disease of cancer. The first part deals with magnetite (Fe3O4) nanoparticles (MNPs) based nanoconjugates, functionalized by coating with several polymers as well as loaded with a drug of curcumin. The used MNPs were obtained by coprecipitation, exhibited spherical shape of diameter of 15-20 nm, saturation magnetization of Ms ~ 65-70 emu/g. The coating polymers were acrylic acid (PAA), chitosan (CS) and Alginate (Alg) which were confirmed using the infrared (FTIR) spectra. Magnetic Inductive Heating (MIH) measurements demonstrated that the fabricated MNPs-based conjugates exhibited quite high heating performance, perspective for hyperthermia application. The application of Fe3O4@PAA for in-vivo hyperthermia treatment of cancer incubated on mice will be shown. As for imaging application, the Fe3O4@CS@Cur was used to demonstrate a dual possibilities, fluorescence and magnetic resonance, of monitoring cell penetration by macrophage. In the second part, we show a recent study on targeted delivery systems of paclitaxel/doxorubicin/curcumin-loaded copolymer/polymer nanoparticles, which were prepared by a modified solvent extraction/evaporation technique and decorated by folic acid. The obtained spherical nanoparticles were negatively charged with a zeta potential of about − 30 mV with the size around 50 nm and a narrow size distribution. The targeting effect of anticancer-drugs nanoparticles with folate decoration was investigated in vitro by the uptake in cancer cell lines and in nude mouse. The results indicate that the targeted paclitaxel/doxorubicin/curcumin-loaded copolymer/polymer nanoparticles are successful anticancer-targeted drug delivery system for effective cancer chemotherapy.
Description: IFMBE Proceedings, Volume 46, 2015, Pages 55-57, 5th International Conference on the Development of Biomedical Engineering, 2014; Ho Chi Minh City; Viet Nam; 16 June 2014 through 18 June 2014; Code 117119
URI: http://link.springer.com/chapter/10.1007%2F978-3-319-11776-8_14
http://repository.vnu.edu.vn/handle/VNU_123/34071
ISSN: 16800737
Appears in Collections: Bài báo của ĐHQGHN trong Scopus
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s